Temporal Compressive Sensing Instrumentation for TEM

نویسندگان

  • Daniel J. Masiel
  • Ruth S. Bloom
  • Sang Tae Park
  • Bryan W. Reed
چکیده

Advances in compressive sensing (CS) techniques and instrumentation have created a renewed interest in exploring new methods for data collection and post-processing [1,2]. Recently developed Temporal CS (TCS) techniques based on post-specimen, high-speed electrostatic beam deflectors effectively multiply the frame rate of commonly available TEM cameras by pre-compressing video data on the detector prior to readout, enabling much higher frame rates for in situ TEM measurements. In addition to improving camera frame rate, TCS opens up a very powerful set of techniques for electron imaging, diffraction, and spectroscopy by mapping time to other external experimental parameters such as probe position, probe strobe frequency, sample orientation, or sample drift. The TCS system introduced here is capable of precisely modulating or recording these experimental parameters through the same Integrated Timing Unit (ITU) that manages the camera and deflector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

TEM Video Compressive Sensing

One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use ...

متن کامل

Applying compressive sensing to TEM video: a substantial frame rate increase on any camera

One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors...

متن کامل

Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks

Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a nov...

متن کامل

Tree-Structure Bayesian Compressive Sensing for Video

A Bayesian compressive sensing framework is developed for video reconstruction based on the color coded aperture compressive temporal imaging (CACTI) system. By exploiting the three dimension (3D) tree structure of the wavelet and Discrete Cosine Transformation (DCT) coefficients, a Bayesian compressive sensing inversion algorithm is derived to reconstruct (up to 22) color video frames from a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017